## CHAPTER 1: SUPPLEMENTARY PROBLEMS MEASUREMENTS

- S1-1. Write the following quantities in exponential notation, with one digit to the left of the decimal point (e.g.,  $17 \text{ fC} = 1.7 \times 10^{-14} \text{ C}$ ): (a) 2 TJ (c) 37 Mm (e) 842 pF
  - (b) 37 mm (d) 4 dK (f) 18.4 kPa

**S1-2.** Express the following quantities with abbreviations for units and prefixes from Tables 1-1 through 1-3:

- (a)  $8 \times 10^{-5}$  moles(c)  $4 \times 10^{-7}$  liters(e)  $1.8 \times 10^{14}$  hertz(b)  $1 \times 10^{10}$  watts(d)  $3 \times 10^{-2}$  meters(f)  $537 \times 10^{10}$  ohms
- **S1-3.** The lowest temperature attained in the laboratory in 1990 was 800 pK (for the nuclei of silver atoms). Solid <sup>3</sup>He has been cooled to 43  $\mu$ K. Express the quotient 800 pK/43  $\mu$ K in exponential notation (i.e.  $a \times 10^{b}$ ).
- **S1-4.** Use Table 1-4 to confirm that there are 760 torr in 1 atm.
- **S1-5.** If 0.250 L of aqueous solution with a density of 1.00 g/mL contins 13.7 μg of pesticide, express the concentration of pesticide in (a) ppm and (b) ppb.
- S1-6. High purity water required in the semiconductor industry is purified by a process called deionization in which most cations and anions are replaced by H<sup>+</sup> and OH<sup>-</sup>, respectively. (The product of H<sup>+</sup> + OH<sup>-</sup> is just H<sub>2</sub>O.) The average concentrations of some residual cations and anions left after deionization in one high purity industrial water line are shown below:

| Na <sup>+</sup>         | 154 ng/L | Cl-             | 172 ng/L |
|-------------------------|----------|-----------------|----------|
| $\operatorname{NH}_4^+$ | 58 ng/L  | Br              | <10 ng/L |
| $K^+$                   | 63 ng/L  | NO <sub>3</sub> | 26 ng/L  |
| $Mg^{2+}$               | 73 ng/L  | $HPO_4^{2-}$    | <30 ng/L |
| Ca <sup>2+</sup>        | 45 ng/L  | $SO_4^{2-}$     | 128 ng/L |

Find the molar concentrations of Na<sup>+</sup> and Cl<sup>-</sup> in this water. Use a prefix from Table 1-3 to express your answers.

- **S1-7.** Find the molarity of pyridine (C<sub>5</sub>H<sub>5</sub>N) if 5.00 g is dissolved in butanol to give a total volume of 457 mL.
- S1-8. A 95.0 wt % solution of ethanol (CH<sub>3</sub>CH<sub>2</sub>OH, FM 46.07) in water has a density of 0.804 g/mL.

- (a) Find the mass of 1.00 L of this solution and the number of grams of ethanol per liter.
- (b) What is the molar concentration of ethanol in this solution?
- (c) Find the molality of ethanol in this solution, considering H<sub>2</sub>O to be the solvent (even though H<sub>2</sub>O is really the solute in this case).
- S1-9. (a) How many grams of the element nickel are contained in 10.0 g of a 10.2 wt % solution of nickel sulfate hexahydrate, NiSO<sub>4</sub> · 6H<sub>2</sub>O (FM 262.85)?
  - (b) The concentration of this solution is 0.412 M. Find the density.
- S1-10. Describe how to prepare exactly 100 mL of 1.00 M HCl from 12.1 M HCl reagent.
- S1-11. Describe how to prepare approximately 100 mL of 0.082 m NaClO<sub>4</sub> (FM 122.44).
- **S1-12.** A 40.0 wt % solution of CsCl (FM 168.37) has a density of 1.43 g/mL, while a 20.0 wt % solution has a density of 1.18 g/mL.
  - (a) Find the molarity of CsCl in each solution.
  - (b) Find the molality of CsCl in each solution.
  - (c) How many mL of each solution should be diluted to 500 mL to make 0.100 M reagent? Why doesn't it take twice as much of the 20.0 wt % solution as the 40.0 wt % solution?
- **S1-13.** How many grams and how many mL of 40.0 wt % urea solution (density = 1.111 g/mL) are required to react with 4.00 mmol of Fe<sup>3+</sup> in the following reactions?

 $(H_2N)_2CO + 3H_2O \rightarrow CO_2 + 2NH_4^+ + 2OH^-$ Urea  $Fe^{3+} + 3OH^- + (x-1)H_2O \rightarrow FeOOH \cdot xH_2O(s)$ 

**S1-14.** The constant  $\hbar$  (read "h bar") is defined as  $h/2\pi$ , where h is Planck's constant [6.626 075 5 (±0.000 004 0) ×10<sup>-34</sup> J·s]. Calculate the value and absolute uncertainty of  $\hbar$ . The number 2 is an integer (infinitely accurate) and  $\pi$  is also an exact number. The first 10 digits of  $\pi$  are 3.141 592 653.

## CHAPTER 2: SUPPLEMENTARY PROBLEMS TOOLS OF THE TRADE

- **S2-1.** Find the true mass of benzene ( $C_6H_6$ , density = 0.88 g/mL) if the apparent mass in air is 9.947 g. Assume that the air density is 0.001 2 g/mL and the balance weight density is 8.0 g/mL.
- S2-2. An aqueous solution prepared when the lab temperature was 19° C had a concentration 0.027 64 M. What is the concentration of the same solution when used outdoors in the summer at 35° C?
- **S2-3.** Water from a 5-mL pipet was drained into a weighing bottle whose empty mass was 9.974 g to give a new mass of 14.974 g at 26° C. Find the volume of the pipet at 26° C and at 20° C.

## CHAPTER 3: SUPPLEMENTARY PROBLEMS EXPERIMENTAL ERROR

| <b>S3-1</b> . | Indicate how many significant (a) 0.3050 (b)                                                                                                                               | nt figures there are in:<br>0.003 050                              | (c) $1.003 \times 10^4$                                                                                                              |   |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---|
| S3-2.         | <ul> <li>Round each number as indica</li> <li>(a) 5.124 8 to 4 significant fi</li> <li>(b) 5.124 4 to 4 significant fi</li> <li>(c) 5.124 5 to 4 significant fi</li> </ul> | gures(d) 0.135 237gures(e) 1.525 to 3 s                            | 1 to 4 significant figures<br>significant figures<br>to 3 significant figures                                                        |   |
| <b>S3-3</b> . | Write each answer with the co<br>(a) $3.021 + 8.99 = 12.011$<br>(b) $12.7 - 1.83 = 10.87$<br>(c) $6.345 \times 2.2 = 13.9590$                                              | (d) $0.030 \ 2 \div (2.114)$<br>(e) $\log (2.2 \times 10^{-18}) =$ | =? (g) $10^{-4.555} = ?$                                                                                                             |   |
| <b>S3-4</b> . | Using the correct number of s                                                                                                                                              | ignificant figures, find the                                       | e formula mass of $C_6H_{13}B$ .                                                                                                     |   |
| S3-5.         | Find the absolute and percent<br>number of significant figures.<br>(a) $3.4 (\pm 0.2) + 2.6 (\pm 0.1) = 4$<br>(b) $3.4 (\pm 0.2) \div 2.6 (\pm 0.1) = 4$                   | ? (c) $[3.4 (\pm 0.2) \times 1]$                                   |                                                                                                                                      |   |
| S3-6.         | Express the molecular mass (<br>significant figures.                                                                                                                       | ± uncertainty) of benzene,                                         | , $C_6H_6$ , with the correct number of                                                                                              |   |
| <b>S</b> 3-7. |                                                                                                                                                                            | 95) mL. Find the molarity tres.                                    | 00 2) g of KIO <sub>3</sub> [FM 214.001 0<br>y and its uncertainty with an appropriate<br>agent were only 99.9% pure?                |   |
| S3-8.         | Find the absolute and percent<br>number of significant figures.<br>(a) $\sqrt{3.4 (\pm 0.2)} = ?$                                                                          | -                                                                  | express each answer with a reasonable<br>(e) $\log [3.4 (\pm 0.2)] = ?$                                                              |   |
|               | (b) $[3.4 (\pm 0.2)]^2 = ?$                                                                                                                                                | (d) $e^{3.4 (\pm 0.2)} = ?$                                        | (f) $\ln [3.4 (\pm 0.2)] = ?$                                                                                                        |   |
| S3-9.         | from the quotient $R/N$ , where                                                                                                                                            | <i>R</i> is the gas constant and                                   | de front cover of the book is calculated $N$ is Avogadro's number. If the sainty in $N$ is 0.000 003 6 × 10 <sup>23</sup> /mol, find | l |

**S3-10.** Find the uncertainty in the molecular mass of  $B_{10}H_{14}$  and write the molecular mass with the correct number of significant figures.

## CHAPTER 4: SUPPLEMENTARY PROBLEMS STATISTICS

S4-1. Consider Rayleigh's data for the mass of gas from air in Table 4-3. Find the(a) mean(b) standard deviation(c) variance

**S4-2.** Suppose that a Gaussian population of measurements has a mean of 1 000 and a standard deviation of 50. What fraction of the population lies in the following intervals:

| (a) >1 000 | (b) 950-1 050 | (c) 850-1 150 |
|------------|---------------|---------------|
| (d) <900   | (e) 930-1 030 | (f) 912-991   |

S4-3. Write the equation of the smooth Gaussian curve in Figure 4-1. (Since the curve represents the results of 4 768 measurements, and each bar on the graph corresponds to a 20-h interval, you must use a factor of 4 768  $\times$  20 in the numerator of Equation 4-3.) Use the equation to calculate the value of *y* when *x* = 1000 h and see if your calculated value agrees with the value on the graph.

- **S4-4.** Find the 95 and 99% confidence intervals for the mean mass of nitrogen from chemical sources in Table 4-3.
- **S4-5.** Two methods were used to measure the specific activity (units of enzyme activity per milligram of protein) of an enzyme. One unit of enzyme activity is defined as the amount of enzyme that catalyzes the formation of one micromole of product per minute under specified conditions.

| Enzyme activity (five replications) |     |     |     |     |     |
|-------------------------------------|-----|-----|-----|-----|-----|
| Method 1:                           | 139 | 147 | 160 | 158 | 135 |
| Method 2:                           | 148 | 159 | 156 | 164 | 159 |

Is the mean value of method 1 significantly different from the mean value of method 2 at the 95% confidence level?

- S4-6. It is known from many careful measurements that the concentration of magnesium in a material is 0.137 wt %. Your new analytical procedure gives values of 0.129, 0.133, 0.136, 0.130, 0.128 and 0.131 wt %. Do your results differ from the expected result at the 95% confidence level?
- **S4-7.** Calcium in a mineral was analyzed five times by each of two methods, with similar standard deviations. Are the mean values significantly different at the 95% confidence level?

| Method 1: | 0.027 1 | 0.028 2 | 0.027 9 | 0.027 1 | 0.027 5 |
|-----------|---------|---------|---------|---------|---------|
| Method 2: | 0.027 1 | 0.026 8 | 0.026 3 | 0.027 4 | 0.026 9 |

**S4-8.** The Ti content (wt %) of two different ore samples was measured several times by the same method. Are the mean values significantly different at the 95% confidence level?

| Sample 1: | 0.013 4 | 0.013 8 | 0.012 8 | 0.013 3 | 0.013 7 |
|-----------|---------|---------|---------|---------|---------|
| Sample 2: | 0.013 5 | 0.014 2 | 0.013 7 | 0.014 1 | 0.014 3 |

**S4-9.** The calcium content of a person's urine was determined on two different days:

| Day | Average Ca (mg/L) | Number of measurements |
|-----|-------------------|------------------------|
| 1   | 238               | 4                      |
| 2   | 255               | 5                      |

The analysis applied to many samples yields a standard deviation of 14 mg/L. Are the two averages significantly different at the 95% confidence level?

- **S4-10.** Using the Q test, decide whether the value 0.195 should be rejected from the set of results: 0.217, 0.224, 0.195, 0.221, 0.221, 0.223.
- **S4-11.** (a) The table below lists rainfall measured in Los Angeles. Enter this data into a spreadsheet and compute the average and standard deviation.
  - (b) Prepare a barchart showing rainfall as a function of year from 1878 to 1996.
  - (c) Prepare a *histogram* (another barchart) from this data showing rainfall in 2-inch intervals in the format below. For example, the bar at x = 15 will show the number of years in which the rainfall was in the range 14.00 to 15.99 inches. In your judgement, does rainfall follow a Gaussian distribution?



| Year | Rainfall (inches) | Year | Rainfall (inches) | Year | Rainfall (inches) |
|------|-------------------|------|-------------------|------|-------------------|
| 1878 | 20.860            | 1918 | 17.490            | 1958 | 17.490            |
| 1879 | 17.410            | 1919 | 8.820             | 1959 | 6.230             |
| 1880 | 18.650            | 1920 | 11.180            | 1960 | 9.570             |
| 1881 | 5.530             | 1921 | 19.850            | 1961 | 5.830             |
| 1882 | 10.740            | 1922 | 15.270            | 1962 | 15.370            |
| 1883 | 14.140            | 1923 | 6.250             | 1963 | 12.310            |
| 1884 | 40.290            | 1924 | 8.110             | 1964 | 7.980             |
| 1885 | 10.530            | 1925 | 8.940             | 1965 | 26.810            |
| 1886 | 16.720            | 1926 | 18.560            | 1966 | 12.910            |
| 1887 | 16.020            | 1927 | 18.630            | 1967 | 23.660            |
| 1888 | 20.820            | 1928 | 8.690             | 1968 | 7.580             |
| 1889 | 33.260            | 1929 | 8.320             | 1969 | 26.320            |
| 1890 | 12.690            | 1930 | 13.020            | 1970 | 16.540            |
| 1891 | 12.840            | 1931 | 18.930            | 1971 | 9.260             |
| 1892 | 18.720            | 1932 | 10.720            | 1972 | 6.540             |
| 1893 | 21.960            | 1933 | 18.760            | 1973 | 17.450            |
| 1894 | 7.510             | 1934 | 14.670            | 1974 | 16.690            |
| 1895 | 12.550            | 1935 | 14.490            | 1975 | 10.700            |
| 1896 | 11.800            | 1936 | 18.240            | 1976 | 11.010            |
| 1897 | 14.280            | 1937 | 17.970            | 1977 | 14.970            |
| 1898 | 4.830             | 1938 | 27.160            | 1978 | 30.570            |
| 1899 | 8.690             | 1939 | 12.060            | 1979 | 17.000            |
| 1900 | 11.300            | 1940 | 20.260            | 1980 | 26.330            |
| 1901 | 11.960            | 1941 | 31.280            | 1981 | 10.920            |
| 1902 | 13.120            | 1942 | 7.400             | 1982 | 14.410            |
| 1903 | 14.770            | 1943 | 22.570            | 1983 | 34.040            |
| 1904 | 11.880            | 1944 | 17.450            | 1984 | 8.900             |
| 1905 | 19.190            | 1945 | 12.780            | 1985 | 8.920             |
| 1906 | 21.460            | 1946 | 16.220            | 1986 | 18.000            |
| 1907 | 15.300            | 1947 | 4.130             | 1987 | 9.110             |
| 1908 | 13.740            | 1948 | 7.590             | 1988 | 11.570            |
| 1909 | 23.920            | 1949 | 10.630            | 1989 | 4.560             |
| 1910 | 4.890             | 1950 | 7.380             | 1990 | 6.490             |
| 1911 | 17.850            | 1951 | 14.330            | 1991 | 15.070            |
| 1912 | 9.780             | 1952 | 24.950            | 1992 | 22.650            |
| 1913 | 17.170            | 1953 | 4.080             | 1993 | 23.440            |
| 1914 | 23.210            | 1954 | 13.690            | 1994 | 8.690             |
| 1915 | 16.670            | 1955 | 11.890            | 1995 | 24.060            |
| 1916 | 23.290            | 1956 | 13.620            | 1996 | 17.750            |
| 1917 | 8.450             | 1957 | 13.240            |      |                   |

**S4-12.** Students at Eastern Illinois University intended to prepare copper(II) carbonate by adding a solution of  $CuSO_4 \cdot 5H_2O$  to a solution of  $Na_2CO_3$ .

$$CuSO_4 \cdot 5H_2O(aq) + Na_2CO_3(aq) \rightarrow CuCO_3(s) + Na_2SO_4(aq) + 5H_2O(l)$$
  
copper(II) carbonate

After warming the mixture to 60°C, the gelatinous blue precipitate coagulated into an easily filterable pale green solid. The product was filtered, washed, and dried at 70° C. Copper in the product was measured by heating 0.4 g of solid in a stream of methane at high temperature to reduce the solid to pure Cu, which was weighed.

$$4\operatorname{CuCO}_3(s) + \operatorname{CH}_4(g) \xrightarrow{\text{heat}} 4\operatorname{Cu}(s) + 5\operatorname{CO}_2(g) + 2\operatorname{H}_2\operatorname{O}(g)$$

In 1995, 43 students found a mean value of 55.6 wt % Cu with a standard deviation of 2.7 wt %. In 1996, 39 students found 55.9 wt % with a standard deviation of 3.8 wt %. The instructor tried the experiment 9 times and measured 55.8 wt % with a standard deviation of 0.5 wt %. Was the product of the reaction probably CuCO<sub>3</sub>? Could it have been a hydrate, CuCO<sub>3</sub> · xH<sub>2</sub>O? [This problem was taken from D. Sheeran, *J. Chem. Ed.* **1998**, *75*, 453. See also H. Gamsjäger and W. Preis, *J. Chem. Ed.* **1999**, *76*, 1339.]